Un equipo del Consejo Superior de Investigaciones Científicas (CSIC) ha impulsado el desarrollo de un nuevo método de microscopía de fuerzas atómicas, un instrumento mecano-óptico empleado en nanociencia y nanotecnología para tomar imágenes de los átomos y las moléculas de la superficie de un material. La técnica, cuya patente ya está en fase de explotación comercial, aparece en el último número de la revista Nature Nanotechnology.
Una mircopalanca que tiene en su extremo una punta muy afilada es la principal característica de un microscopio de fuerzas, una herramienta que surgió hace 25 años para “escanear” la superficie de un material y examinar el modo en que sus átomos y moléculas están colocados. En la técnica convencional, esa micropalanca se hace vibrar a una frecuencia dada.
Ahora, “lo que nosotros hemos desarrollado es un microscopio de fuerzas bimodal que, a diferencia del convencional, introduce la excitación y detección de dos frecuencias de resonancia de la punta del microscopio", aclara el investigador del Instituto de Microelectrónica de Madrid (CSIC) Ricardo García, coordinador del método. "Al excitar y detectar dos frecuencias se multiplican por dos los canales de información, lo que implica que, de forma simultánea, pueden obtenerse imágenes de diferentes propiedades de la muestra”.
El nuevo desarrollo permite reconstruir con mayor fidelidad la topografía y las propiedades mecánicas del material examinado. “La técnica bimodal aumenta la capacidad para recoger y separar información sobre la muestra. Además, es menos invasiva porque se ejercen fuerzas más pequeñas sobre el material durante la observación”, agrega García.
Un cambio de paradigma
El artículo, publicado en Nature Nanotechnology, describe las contribuciones más relevantes del nuevo tipo de microscopía de fuerzas basado en la multifrecuencia, que permite abordar problemas relevantes en energía y nanomedicina. Por ejemplo, se menciona cómo a través de la medición de las propiedades nanomecánicas de diversas células es posible desarrollar nuevos métodos que detecten las primeras etapas de la migración de células cancerígenas.
“Un aspecto muy novedoso de las técnicas de multifrecuencia es su versatilidad. Por una parte, pueden proporcionar con resolución casi molecular medidas de propiedades mecánicas de proteínas en medios casi fisiológicos y escalas de tiempo de milisegundos. Otras aplicaciones aprovechan la sensibilidad y resolución de estas microscopías para caracterizar y mejorar las prestaciones de las baterías de litio”, señala el investigador.
FOTO: Imagen izquierda de microscopía de fuerzas con molécula de ferritina (cubierta de péptidos separada del núcleo de óxido de hierro). A la derecha, esquema de la adquisición de una imagen de la morfología y las propiedades mecánicas de un anticuerpo en líquido mediante la microscopía de fuerzas en multifrecuencia. Imagen: Ricardo García/CSIC.