La búsqueda de soluciones para la COVID-19 se ha convertido en el primer objetivo de decenas de grupos de investigación. Varios de ellos trabajan ya con anticuerpos de camélidos, cuya estructura, tamaño y estabilidad permitirán desarrollar tratamientos y vacunas contra la infección. FOTO: Grupo de llamas y alpacas en una granja de Bélgica gestionada por el Instituto Vlaams de Biotecnología de la Universidad de Gante. / Tim Coppens
Se llama Winter (invierno, en inglés), tiene cuatro años y vive junto a otras 130 compañeras en una granja en Bélgica. Esta llama de criadero podría estar destinada a la industria textil, pero no es su lana lo que interesa, sino sus anticuerpos. Con ellos se quieren desarrollar fármacos que neutralicen la infección del SARS-CoV-2.
Los nanocuerpos de llama se han convertido en valiosos candidatos terapéuticos, aún en fases experimentales, contra diferentes virus como el VIH y cáncer
Además de las inmunoglobulinas normales (Ig) presentes en todos los mamíferos, “los camélidos, como las llamas, camellos y alpacas, producen un tipo especial que son mucho menos de la mitad del tamaño de los anticuerpos convencionales”, explica a SINC Daniel Wrapp, investigador en la Universidad de Texas, Austin, en EE UU. Estos anticuerpos también se encuentran en los tiburones.
Son llamados nanocuerpos o nanobodies por tener una cuarta parte del tamaño de los anticuerpos normales y una estructura simple. Desde su descubrimiento en el dromedario en 1989, los científicos entendieron que abrirían nuevas perspectivas en la ingeniería de anticuerpos.
Desde entonces, se han convertido en valiosos candidatos terapéuticos, aún en fases experimentales, contra diferentes virus como el VIH, e incluso contra el cáncer de hígado u otras patologías hematológicas. Por sus características únicas y su facilidad para reproducirlos, son usados por grupos de investigación en todo el mundo. “Es fácil trabajar con ellos y son estables”, dice a SINC Xavier Saelens, científico en el Instituto Vlaams de Biotecnología de la Universidad de Gante, Bélgica.
Llamas contra coronavirus pasados
El investigador, junto al equipo de Jason McLellan de la Universidad de Texas, Austin, estaban convencidos de que estos anticuerpos de llama, conocidos como VHH, serían capaces de neutralizar los anteriores coronavirus MERS-CoV y SARS-CoV-1. Iniciaron su estudio en 2016 en su laboratorio. “Pensamos que era importante porque estos coronavirus también tienen un historial de saltos de animales a humanos y generan enfermedades graves”, continúa Saelens.
Llama Winter. / Tim Coppens
En aquel momento, la llama Winter, que por entonces tenía nueve meses, empezó a formar parte de los experimentos. Al igual que sucede con los humanos cuando reciben vacunas para inmunizarse contra un virus, a esta llama le inyectaron proteínas de espícula (que permiten penetrar y unirse a las células humanas) estabilizadas de esos virus durante unas seis semanas para ser inmunizada.
Los investigadores recogieron muestras de sangre y aislaron los anticuerpos que se unían a cada versión de la proteína. Uno de ellos, al que denominaron VHH-72, demostró ser prometedor para detener el SARS-CoV-1 in vitro.
“Nuestro objetivo era encontrar nanocuerpos que pudieran tener una reacción cruzada con múltiples betacoronavirus como MERS y SARS. Muchos de los parientes de estos virus se encuentran en especies de murciélagos”, señala el investigador belga.
Ahora, el equipo han probado la eficacia de un tratamiento con anticuerpo de llama contra el nuevo coronavirus SARS-CoV-2. Los resultados del trabajo se han publicado esta semana en la revista Cell.
Gracias a trabajos anteriores, los investigadores sabían que el nanocuerpo para el SARS-CoV-1 se unía, aunque débilmente, a la proteína de espícula del SARS-CoV-2. Para mejorar su eficacia, vincularon dos copias de VHH-72 y así lograron que se adhiriera fuertemente. Las pruebas iniciales en cultivos mostraron que el anticuerpo impedía que el virus infectara las células.
“Este es uno de los primeros anticuerpos conocidos para neutralizar el SARS-CoV-2”, recalca Jason McLellan, profesor en la Universidad de Texas en Austin. Este investigador fue quien reveló cómo estos nanoanticuerpos se unen a las proteínas de espícula del MERS y el SARS y cómo impiden la infección.
McLellan lideró, además, el equipo que creó el primer mapa a escala atómica en 3D de la proteína de espícula del nuevo coronavirus, un paso esencial para desarrollar vacunas y antivirales. El estudio de esta estructura molecular, que tardó solo unos días en realizarse desde que recibieron el genoma de SARS-CoV-2, se publicó en febrero en la revista Science.
Posible tratamiento para la COVID-19
“El anticuerpo que aislamos se adhiere a la proteína de espícula del SARS-CoV-2 que permite que el virus entre en las células huésped y comience el proceso de infección. Así evita su entrada a la célula humana, lo que neutraliza el virus”, detalla Wrapp, primer autor del estudio publicado en Cell.
“Si todo va según lo planeado, este tratamiento con anticuerpos podría aprobarse para uso humano en aproximadamente un año”, afirma Wrapp
Según el investigador, este anticuerpo es particularmente efectivo porque se une a un parche conservado de la proteína, lo que le permite anular tanto el SARS-CoV-1 como el SARS-CoV-2.
Tras los ensayos in vitro, “el siguiente paso será realizar experimentos con animales para averiguar si el anticuerpo también reduce la infección en un animal susceptible a la infección por SARS-CoV-2”, subraya a SINC Saelens. Por ejemplo, en hámsters o primates no humanos. Después, el fármaco del anticuerpo tendrá que ser producido de manera controlada “antes de poder ser probado en humanos”, prosigue.
“Si todo va según lo planeado, este tratamiento con anticuerpos podría aprobarse para uso humano en aproximadamente un año”, afirma a SINC Wrapp.
Los investigadores crearon un anticuerpo denominado VHH-72Fc (azul) que se une fuertemente a la proteína de espícula del SARS-CoV-2 (rosa, verde y naranja), bloqueando la infección del virus en las células. / Universidad de Texas, Austin
Inhalador para pacientes infectados
Gracias a su estructura simple, los anticuerpos de llama se pueden nebulizar y usar en un inhalador. “Eso los hace realmente interesantes como tratamiento para un patógeno respiratorio porque los llevas directamente al lugar de la infección”, dice Wrapp.
El tratamiento con anticuerpos puede suministrarse a pacientes que ya están enfermos y así reducir la gravedad de sus síntomas y ayudarles a curarse más rápido
La estrategia que pretende seguir McLellan, de la Universidad de Texas en Austin, es administrar la terapia con anticuerpos protectores directamente a la persona. “Por lo tanto, inmediatamente después del tratamiento, está protegida”, asegura.
Mientras que las vacunas se deben administrar uno o dos meses antes de la infección para brindar protección, el tratamiento con anticuerpos “puede suministrarse a pacientes que ya están enfermos”, subraya a SINC Daniel Wrapp. “Así se reduciría la gravedad de sus síntomas y les ayudarían a curarse más rápido”, añade.
Esto sería especialmente útil para grupos vulnerables como las personas mayores, que presentan una respuesta modesta a las vacunas. Los sanitarios, otros trabajadores de la salud y otras personas con mayor riesgo de exposición al virus también pueden beneficiarse de la protección inmediata.
Vacuna en spray nasal
Además del desarrollo de medicamentos, el estudio en nanobodies podrían permitir la creación de vacunas. Un equipo de nueve laboratorios, dirigido por el virólogo de la Universidad de Ottawa (Canadá) Marc-André Langlois, está trabajando con nanocuerpos de camélidos para desarrollar una en forma de aerosol nasal.
El proyecto ha recibido una financiación de un millón de dólares por parte de los Institutos Canadienses de Investigación en Salud (CIHR, por sus siglas en inglés).
Un equipo liderado por la Universidad de Ottawa está trabajando con nanocuerpos de camélidos para desarrollar una vacuna en forma de aerosol nasal
Con la ayuda de dos llamas que serán inmunizadas, el equipo de Langlois generará anticuerpos anticoronavirus y clonará los genes que los codifican para producirlos en masa en el laboratorio gracias a la ingeniería inversa.
El proyecto más ambicioso será el desarrollo de esa vacuna en aerosol con un enfoque diferente a otros grupos de investigación. En su caso, se utilizará un método –más barato que los cultivos de células animales– basado en varias plantas como el arroz para expresar en ellas las proteínas virales que el sistema inmunitario percibe como amenaza.
“No sabemos si esto va a funcionar”, subraya Langlois. “Es razonable pensar que podría, y si lo hace, será una forma barata de producir muchas vacunas para mucha gente, muy rápidamente”.
El procedimiento puede durar al menos dos años, pero el equipo espera que esto permita estar preparado ante futuros brotes que Langlois considera “altamente probables”.
Grupo de llamas con Winter al centro. / Tin Coppens
Fuente: SINC